By Topic

Formation of zinc oxide films using submicron zinc particle dispersions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Rajachidambaram, Meena S. ; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331 ; Varga, T. ; Kovarik, Libor ; Sanghavi, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4731255 

The thermal oxidation of submicron metallic Zn particles was studied as a method to form nanostructured ZnO films. The particles used for this work were characterized by electron microscopy, x ray diffraction, and thermal analysis to evaluate the Zn-ZnO core shell structure, surface morphology, and oxidation characteristics. Significant nanostructural changes were observed for films annealed to 400 °C or higher, where nanoflakes, nanoribbons, nanoneedles, and nanorods were formed as a result of stress induced fractures arising in the ZnO outer shell due to differential thermal expansion between the metallic Zn core and the ZnO shell. Mass transport occurs through these defects due to the high vapor pressure for metallic Zn at temperatures above 230 °C, whereupon the Zn vapor rapidly oxidizes in air to form the ZnO nanostructures. The Zn particles were also incorporated into zinc indium oxide precursor solutions to form thin film transistor test structures to evaluate the potential of forming nanostructured field effect sensors using simple solution processing.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:30 ,  Issue: 4 )