By Topic

Stack layout transformation: Towards diversity for securing binary programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rodes, B. ; Dept. of Comput. Sci., Univ. of Virginia, Charlottesville, VA, USA

Despite protracted efforts by both researchers and practitioners, security vulnerabilities remain in modern software. Artificial diversity is an effective defense against many types of attack, and one form, address-space randomization, has been widely applied. Present artificial diversity implementations are either coarse-grained or require source code. Because of the widespread use of software of unknown provenance, e.g., libraries, where no source code is provided or available, building diversity into the source code is not always possible. I investigate an approach to stack layout transformation that operates on x86 binary programs, which would allow users to obfuscate vulnerabilities and increase their confidence in the software's dependability. The proposed approach is speculative: the stack frame layout for a function is inferred from the binary and assessed by executing the transformed program. Upon assessment failure, the inferred layout is refined in hopes to better reflect the actual function layout.

Published in:

Software Engineering (ICSE), 2012 34th International Conference on

Date of Conference:

2-9 June 2012