By Topic

Subthreshold CMOS voltage reference circuit with body bias compensation for process variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
H. Luo ; Department of ISEE, Zhejiang University, Hangzhou, 310027, People's Republic of China ; Y. Han ; R. C. C. Cheung ; G. Liang
more authors

This study presents a subthreshold complementary metal oxide semiconductor (CMOS) voltage reference circuit that adopts dynamical body bias to compensate the process-related reference voltage fluctuation. The proposed circuit generates a mean reference voltage of 0.781 V at 1.2 V supply and 27°C, reduces the standard deviation (σ) of the reference voltage from 11 mV to only 3 mV, and meanwhile improves the power supply rejection ratio from -30.7 to -51.4 dB. The average temperature coefficient measured from 0 to 100°C is 48 ppm/°C, and the line regulation is 0.34%/V in a supply voltage ranging from 1.2 to 2.3 V. The maximum supply current is 8.1 μA at 1.2 V supply and 100°C, and the chip area is 0.0533 mm2 in 0.13-μm CMOS technology.

Published in:

IET Circuits, Devices & Systems  (Volume:6 ,  Issue: 3 )