By Topic

On the use of Karatsuba formula to detect errors in GF((2(sup)n(/sup))(sup)2(/sup)) multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pontarelli, S. ; Dept. of Electron. Eng., Univ. of Rome Tor Vergata, Rome, Italy ; Salsano, A.

Galois fields are widely used in cryptographic applications. The detection of an error caused by a fault in a cryptographic circuit is important to avoid undesirable behaviours of the system that could be used to reveal secret information. One of the methods used to avoid these behaviours is the concurrent error detection. Multiplication in finite field is one of the most important operations and is widely used in different cryptographic systems. The authors propose in this study an error-detection method for composite finite-field multipliers based on the use of Karatsuba formula. The Karatsuba formula can be used in GF((2n)2) field to decrease the hardware complexity of the finite-field multiplier. The authors propose a novel finite-field multiplier with concurrent error-detection capabilities based on the Karatsuba formula. How the error-detection capabilities of this multiplier are able to face a wide range of fault-based attacks is also shown.

Published in:

Circuits, Devices & Systems, IET  (Volume:6 ,  Issue: 3 )