By Topic

A Cost-Effective Strategy for Road-Side Unit Placement in Vehicular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-Jung Wu ; Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan ; Wanjiun Liao ; Chung-Ju Chang

In this paper, we study the Roadside Unit (RSU) placement problem in vehicular networks. We focus on the highway-like scenario in which there may be multiple lanes with exits or intersections along the road. In our model, each vehicle can access RSUs in two ways: 1) direct delivery, which occurs when the vehicle is in the transmission range of the RSUs, and 2) multi-hop relaying, which takes place when the vehicle is out of RSU transmission range. We account for both access patterns in our placement strategy and formulate this placement problem via an integer linear programming model such that the aggregate throughput in the network can be maximized. We also take into account the impact of wireless interference, vehicle population distribution, and vehicle speeds in the formulation. The performance of the proposed placement strategy is evaluated via ns-2 simulations together with VanetMobisim to generate vehicle mobility patterns. The results show that our strategy leads to the best performance as compared with the uniformly distributed placement and the hot spot placement. More importantly, our solution needs the least number of RSUs to achieve the maximal aggregate throughput in the network, indicating that our scheme is indeed a cost effective yet highly efficient placement strategy for vehicular networks.

Published in:

IEEE Transactions on Communications  (Volume:60 ,  Issue: 8 )