By Topic

Determination of Dynamic Material Properties of Silicone Rubber Using One-Point Measurements and Finite Element Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ilg, J. ; Grad. Sch. in Adv. Opt. Technol. (SAOT), Erlangen, Germany ; Rupitsch, S.J. ; Sutor, A. ; Lerch, R.

The dynamic Young's modulus, Poisson's ratio, and the damping factor of silicone rubber are determined from a laser triangulation measurement of the top surface motion of a flat cylindrical sample excited by a shaker. These material parameters are estimated on the basis of an Inverse Method that minimizes the difference between measured data and a prediction from a finite-element model (FEM), in which the sought-after material data are the adjustable parameters. The results are presented for measurements within the 10-400-Hz frequency range under atmospheric pressure and temperature conditions. At first, the measured data are compared with FEM predictions using constant material parameters to show the material behavior in principle. Afterward, the frequency dependence of the moduli and Poisson's ratios are determined by matching measurements with simulations within small frequency ranges. Finally, the material parameters determined are given as functions versus frequency. A sensitivity analysis shows the accuracy of the presented method. This paper is motivated by the need for a precise description of vocal fold models, commonly manufactured from silicone rubber.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:61 ,  Issue: 11 )