By Topic

Near-Duplicate Image Detection in a Visually Salient Riemannian Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ligang Zheng ; School of Information Science Technology, Sun Yat-Sen University, Guangzhou, China ; Yanqiang Lei ; Guoping Qiu ; Jiwu Huang

This paper presents a framework for near-duplicate image detection in a visually salient Riemannian space. A visual saliency model is first used to identify salient regions of the image and then the salient region covariance matrix (SCOV) of various image features is computed. SCOV, which lies in a Riemannian manifold, is used as a robust and compact image content descriptor. An efficient coarse-to-fine Riemannian (CTOFR) image search strategy has been developed to improve efficiency while maintaining accuracy. CTOFR first uses a computationally fast but less accurate log-Euclidean Riemannian metric to do a coarse level search of the entire database and retrieve a subset of likely targets and then uses a computationally expensive but more accurate affine-invariant Riemannian metric to search the returns from the coarse search. We present experimental results to demonstrate that SCOV is a very compact, robust, and discriminative descriptor which is competitive to other state-of-the-art descriptors for near-duplicate image and video detection. We show that CTOFR can yield significant speedups over traditional full search methods without sacrificing accuracy, and that the larger the database the higher the speedup factor.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:7 ,  Issue: 5 )