By Topic

Magnetic Navigation for Thoracic Aortic Stent-graft Deployment Using Ultrasound Image Guidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhe Luo ; Image Guided Surgery and Therapy Laboratory, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China ; Junfeng Cai ; Su Wang ; Qiang Zhao
more authors

We propose a system for thoracic aortic stent-graft deployment that employs a magnetic tracking system (MTS) and intraoperative ultrasound (US). A preoperative plan is first performed using a general public utilities-accelerated cardiac modeling method to determine the target position of the stent-graft. During the surgery, an MTS is employed to track sensors embedded in the catheter, cannula, and the US probe, while a fiducial landmark based registration is used to map the patient's coordinate to the image coordinate. The surgical target is tracked in real time via a calibrated intraoperative US image. Under the guidance of the MTS integrated with the real-time US images, the stent-graft can be deployed to the target position without the use of ionizing radiation. This navigation approach was validated using both phantom and animal studies. In the phantom study, we demonstrate a US calibration accuracy of 1.5 ± 0.47 mm, and a deployment error of 1.4 ± 0.16 mm. In the animal study, we performed experiments on five porcine subjects and recorded fiducial, target, and deployment errors of 2.5 ± 0.32, 4.2 ± 0.78, and 2.43 ± 0.69 mm, respectively. These results demonstrate that delivery and deployment of thoracic stent-graft under MTS-guided navigation using US imaging is feasible and appropriate for clinical application.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:60 ,  Issue: 3 )