Cart (Loading....) | Create Account
Close category search window
 

Strategy for designing broadband epsilon-near-zero metamaterial with loss compensation by gain media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, L. ; Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong ; Yu, K.W.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4730380 

A strategy is proposed to design the broadband gain-doped epsilon-near-zero (GENZ) metamaterial. Based on the Milton representation of effective permittivity, the strategy starts in a dimensionless spectral space, where the effective permittivity of GENZ metamaterial is simply determined by a pole-zero structure corresponding to the operating frequency range. The physical structure of GENZ metamaterial is retrieved from the pole-zero structure via a tractable inverse problem. The strategy is of great advantage in practical applications and also theoretically reveals the cancellation mechanism of the broadband near-zero permittivity phenomenon in the spectral space.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 26 )

Date of Publication:

Jun 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.