By Topic

Optimality of Binary Power Control for the Single Cell Uplink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inaltekin, H. ; Dept. of Electr. & Electron. Eng., Antalya Int. Univ., Antalya, Turkey ; Hanly, S.V.

This paper considers the optimum single cell power control maximizing the aggregate (uplink) communication rate of the cell when there are peak power constraints at mobile users, and a low-complexity data decoder (without successive decoding) at the base station. It is shown that the optimum power allocation is binary, which means that links are either “on” or “off.” By exploiting further structure of the optimum binary power allocation, a simple polynomial-time algorithm for finding the optimum transmission power allocation is proposed, together with a reduced complexity near-optimal heuristic algorithm. Sufficient conditions under which channel-state aware time division multiple access (TDMA) maximizes the aggregate communication rate are established. In a numerical study, we compare and contrast the performance achieved by the optimum binary power-control policy with other suboptimum policies and the throughput capacity achievable via successive decoding. It is observed that two dominant modes of communication arise, wideband or TDMA, and that successive decoding achieves better sum-rates only under near perfect interference cancellation efficiency. In this paper, we exploit the theory of majorization to obtain the aforementioned results. In the final part of this paper, we do so to solve power-control problems in the areas of femtocells and cognitive radio and find that, again, optimal solutions have a binary (or almost binary) character.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 10 )