By Topic

Variational Algorithms to Remove Stationary Noise: Applications to Microscopy Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fehrenbach, J. ; IMT-UMR5219 Lab., Univ. of Toulouse, Toulouse, France ; Weiss, P. ; Lorenzo, C.

A framework and an algorithm are presented in order to remove stationary noise from images. This algorithm is called variational stationary noise remover. It can be interpreted both as a restoration method in a Bayesian framework and as a cartoon+texture decomposition method. In numerous denoising applications, the white noise assumption fails. For example, structured patterns such as stripes appear in the images. The model described here addresses these cases. Applications are presented with images acquired using different modalities: scanning electron microscope, FIB-nanotomography, and an emerging fluorescence microscopy technique called selective plane illumination microscopy.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 10 )