By Topic

Manifold–Manifold Distance and its Application to Face Recognition With Image Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ruiping Wang ; Department of Automation, Tsinghua University, Beijing, China ; Shiguang Shan ; Xilin Chen ; Qionghai Dai
more authors

In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 10 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal