By Topic

Filtering in the Diffeomorphism Group and the Registration of Point Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Gao ; Med. Sch., Dept. of Psychiatry, Harvard Univ., Boston, MA, USA ; Rathi, Y. ; Bouix, S. ; Tannenbaum, A.

The registration of a pair of point sets as well as the estimation of their pointwise correspondences is a challenging and important task in computer vision. In this paper, we present a method to estimate the diffeomorphic deformation, together with the pointwise correspondences, between a pair of point sets. Many of the registration problems are iteratively solved by estimating the correspondence, locally optimizing certain cost functionals over the rigid or similarity or affine transformation group, then estimating the correspondence again, and so on. This type of approach, however, is well-known to be susceptible to suboptimal local solutions. In this paper, we first adopt the perspective of treating the registration as a posterior estimation optimization problem and solve it accordingly via a particle-filtering framework. Second, within such a framework, the diffeomorphic registration is performed to correct the nonlinear deformation of the points. In doing so, we provide a solution less susceptible to local minima. We provide the experimental results, which include challenging medical data sets where the two point sets differ by 180° rotation as well as local deformations, to highlight the algorithm's capability of robustly finding the more globally optimal solution for the registration task.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 10 )