Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Bio-Sensing by Mach–Zehnder Interferometer Comprising Doubly-Corrugated Spoofed Surface Plasmon Polariton (DC-SSPP) Waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhao Xu ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Mazumder, P.

The paper describes the design and analysis of a Mach-Zehnder interferometer (MZI) structure consisting of doubly-corrugated spoofed surface plasmon polariton (DC-SSPP) waveguide. The dependence of phase change on the dielectric loading of the DC-SSPP structure causes the output from both arms to interfere and enhances features on the transmission spectrum of the MZI. The paper uses a mathematical model to predict the phase accumulation of THz signals travelling through each arm of the MZI with various sample loadings. HFSS simulation has been performed to verify the theoretical modeling and produce more sophisticated results. The paper demonstrates that compared with single-armed SSPP waveguide, the proposed MZI structure shows significant shift of the transmission maxima and minima with high quality factors for the transmission peaks when different materials are loaded. The paper also demonstrates that the proposed DC-SSPP MZI structure can be potentially used in tag-free bio-molecular sensing. The highly localized E-M field at frequencies close to SSPP resonance is shown to reduce the sample amount needed to produce interference patterns without affecting the selectivity of the sensing structure.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:2 ,  Issue: 4 )