By Topic

Reducing Features to Improve Code Change-Based Bug Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shivaji, S. ; Dept. of Comput. Sci., Univ. of California, Santa Cruz, Santa Cruz, CA, USA ; Whitehead, E.J. ; Akella, R. ; Sunghun Kim

Machine learning classifiers have recently emerged as a way to predict the introduction of bugs in changes made to source code files. The classifier is first trained on software history, and then used to predict if an impending change causes a bug. Drawbacks of existing classifier-based bug prediction techniques are insufficient performance for practical use and slow prediction times due to a large number of machine learned features. This paper investigates multiple feature selection techniques that are generally applicable to classification-based bug prediction methods. The techniques discard less important features until optimal classification performance is reached. The total number of features used for training is substantially reduced, often to less than 10 percent of the original. The performance of Naive Bayes and Support Vector Machine (SVM) classifiers when using this technique is characterized on 11 software projects. Naive Bayes using feature selection provides significant improvement in buggy F-measure (21 percent improvement) over prior change classification bug prediction results (by the second and fourth authors [28]). The SVM's improvement in buggy F-measure is 9 percent. Interestingly, an analysis of performance for varying numbers of features shows that strong performance is achieved at even 1 percent of the original number of features.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 4 )