By Topic

Finite-Difference Wave Propagation Modeling on Special-Purpose Dataflow Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Modeling wave propagation through the earth is an important application in geoscience. We present a framework for wave propagation modeling on special-purpose hardware, which dramatically improves the application performance compared to conventional CPUs. We utilize custom hardware platforms consisting of a mix of x86 CPUs and dataflow engines connected by high-bandwidth communication links. Application programmers describe their algorithms in a domain specific language using Java syntax, with special dataflow semantics overlayed on top of the Java language. The application-specific dataflow engines run at hundreds of MHz with massive parallelism and deliver high performance/Watt, up to 30 times more energy efficient than conventional CPUs. The power efficiency of this approach suggests that dataflow computing may have a key role to play in the improvements in power efficiency necessary to reach exascale computing.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:24 ,  Issue: 5 )