By Topic

Exploiting Concurrency for Efficient Dissemination in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yi Gao ; Zhejiang Provincial Key Lab. of Service Robot, Zhejiang Univ., Hangzhou, China ; Jiajun Bu ; Wei Dong ; Chun Chen
more authors

Wireless sensor networks (WSNs) can be successfully applied in a wide range of applications. Efficient data dissemination is a fundamental service which enables many useful high-level functions such as parameter reconfiguration, network reprogramming, etc. Many current data dissemination protocols employ network coding techniques to deal with packet losses. The coding overhead, however, becomes a bottleneck in terms of dissemination delay. We exploit the concurrency potential of sensor nodes and propose MT-Deluge, a multithreaded design of a coding-based data dissemination protocol. By separating the coding and radio operations into two threads and carefully scheduling their executions, MT-Deluge shortens the dissemination delay effectively. An incremental decoding algorithm is employed to further improve MT-Deluge's performance. Experiments with 24 TelosB motes on four representative topologies show that MT-Deluge shortens the dissemination delay by 25.5-48.6 percent compared to a typical data dissemination protocol while keeping the merits of loss resilience.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )