By Topic

The Cost of Privatization in Software Transactional Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Attiya, H. ; Dept. of Comput. Sci., Technion - Israel Inst. of Technol., Haifa, Israel ; Hillel, E.

Software transactional memory (STM) is a promising approach for programming concurrent applications; STM guarantees that a transaction, consisting of a sequence of operations on the memory, appears to execute atomically. In practice, however, it is important to be able to run transactions together with nontransactional legacy code accessing the same memory locations, by supporting privatization of shared data. Privatization should be provided without sacrificing the parallelism offered by today's multicore systems and multiprocessors. This paper proves an inherent cost for supporting privatization, which is linear in the number of privatized items. Specifically, we show that a transaction privatizing k items must have a data set of size at least k, in an STM with invisible reads, which is oblivious to different nonconflicting executions and guarantees progress in such executions. When reads are visible, it is shown that r memory locations must be accessed by a privatizing transaction, where r is the minimum between k, the number of privatized items, and the number of concurrent transactions guaranteed to make progress. This captures, in a concrete and quantitative manner, the tradeoff between the cost of privatization and the level of parallelism offered by the STM.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 12 )