By Topic

Signal-Transition Patterns of Functional Broadside Tests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pomeranz, I. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA

Existing low-power test generation procedures use a single number to represent the power dissipation in a circuit or subcircuit. As a result, the specific signal transitions they create may deviate substantially from those possible during functional operation (and those the circuit is designed for). Functional broadside tests create functional operation conditions during their two functional capture cycles. Therefore, the specific signal transitions that occur during their second, fast functional capture cycles can occur during functional operation. This paper defines and studies the patterns of signal transitions under the second, fast functional capture cycles of functional broadside tests. These patterns can be used for evaluating the deviations from functional power dissipation created by low-power test sets that consist of arbitrary (functional and nonfunctional) broadside tests. They can also be used for guiding the generation of low-power test sets. The paper presents experimental results for both applications.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 12 )