By Topic

An Optimization Approach to Joint Cell, Channel and Power Allocation in Multicell Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fallgren, M. ; Department of Mathematics, Royal Institute of Technology (KTH), Stockholm

In this paper, we consider joint resource allocation of a multicell OFDMA-based networks, with fixed two-hop decode-and-forward relay stations. A joint cell, channel and power allocation problem is formulated as an overall optimization problem, where the objective is to maximize the minimum user throughput. Based on previous complexity results for the setting without relays, the overall optimization problem is shown not to be approximable, unless P is equal to NP. We propose a method for solving this challenging problem. First, a feasible cell allocation is obtained, either via greedy allocation or an exhaustive search. Thereafter, the channel and power allocations are alternately updated, either using a heuristic or optimization-based approach while holding the other two allocations fixed. These alternating channel and power allocations are repeated until no further improvement is obtained. The impact of relay stations is investigated by considering a model with relays as well as one without relays. The simulations show that substantial performance improvement can be made by introducing relays. They also indicate, somewhat surprisingly, that the heuristic channel allocation leads to better overall solutions than the corresponding optimization approach in the relay setting. The optimization-based power allocation significantly outperforms the heuristic power approach with as well as without relay stations.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 8 )