By Topic

The effect of the elevated source/drain doping profile on performance and reliability of deep submicron MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sun, J.J. ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; Bartholomew, R.F. ; Bellur, K. ; Srivastava, A.
more authors

Deep submicron NMOSFETs with elevated source/drain (ESD) were fabricated using self-aligned selective epitaxial deposition and engineered ion implanted profiles in the elevated layers, Deeper source/drain (S/D) junctions give rise to improved drive current over shallower profiles when the same spacer thickness and LDD doping level are used, Shallower junctions, especially with the heavily-doped S/D residing in the elevated layer, give better immunity to drain-induced-barrier lowering (DLBL) and bulk punchthrough. Tradeoffs between short-channel behavior and drive current with regard to S/D junction depth and spacer thickness were further studied using process/device simulations to cover a broader range of structure parameters. Despite the existence of epi facets along the sidewall spacers, the elevated S/D could be used as a sacrificial layer for silicidation, without degradation of the low-leakage junctions. The effects of the elevated S/D doping profile on substrate current and hot-electron-induced degradation were measured and analyzed. The simulated results were used, for the first time, to define the range of spacer thickness and LDD doses that are required in order for the lightly-doped region in the elevated S/D to effectively suppress the lateral electric field

Published in:

Electron Devices, IEEE Transactions on  (Volume:44 ,  Issue: 9 )