Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the Equivalence Between the Maxwell-Garnett Mixing Rule and the Debye Relaxation Formula

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Salski, B. ; QWED, Warsaw, Poland ; Celuch, M.

This paper presents a closed-form noniterative transformation of the Maxwell-Garnett mixing rule for biphased mixtures to the triple-pole Debye relaxation formula. For the first time, it is formally proven that such a transformation is complete for conductive constituent materials. In other words, the Maxwell-Garnett representation of any biphased mixture of any conductive materials always has its formal equivalent in the Debye form with three poles at most. For specific aspect ratios of ellipsoidal inclusions, the number of poles reduces to one or two, which is formally proven herein, while in previous studies, a single-pole Debye model was arbitrarily assumed. The proposed transformation provides Debye parameters as an explicit function of a mixture composition, which is competitive to alternative techniques based on laborious curve-fitting algorithms. The newly proposed approach is of particular importance to time-domain modeling of dilute mixtures, where the Maxwell-Garnett mixing rule is usually approximated with available dispersive models. Computational examples given in this paper show advantages of the presented method over previous Maxwell-Garnett to Debye conversion algorithms, in terms of accuracy, robustness, and computational cost.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 8 )