By Topic

Collecting Detection Diversity and Complexity Gains in Cooperative Spectrum Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, Yue ; Research Department of Hisilicon, Huawei Technologies Co., Ltd., Beijing 100095, China ; Zhi Tian ; Chunyan Feng

In cognitive radio (CR) networks, multi-CR cooperation is required during spectrum sensing in order to cope with wireless fading effects and the hidden terminal problem. User cooperation offers not only channel diversity gain against fading, but also complexity gain in terms of reduced sampling costs per CR. The latter is particularly useful when the monitored spectrum has very wide bandwidth and yet individual CRs only have limited hardware capability. To jointly collect both diversity gain and complexity gain, this paper develops a novel cooperative spectrum sensing technique based on matrix rank minimization. Subject to sampling-rate limitations, CRs individually collect digital measurements from a segment of the wide spectrum via coordinated selective filtering, with optional compressive sampling to further reduce the sampling rates. The solutions representing the measurements of all users are modeled to possess a low-rank property, and the rank order is the same as the size of the nonzero support of the monitored wide spectrum. Accordingly, a nuclear norm minimization problem is formulated to jointly identify the nonzero support and hence the overall wideband spectrum occupancy. Both tradeoff evaluation and simulation results corroborate that the proposed cooperative sensing technique outperforms traditional averaging-based cooperative schemes given the same sampling costs, because the low-rank property enables efficient utilization and tradeoff of the user diversity in the absence of any channel knowledge.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 8 )