We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

OPERA: Optimal Routing Metric for Cognitive Radio Ad Hoc Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Caleffi, Marcello ; Dept. of Biomedical, Electronics and Telecommunications Engineering, University of Naples Federico II, Italy ; Akyildiz, I.F. ; Paura, L.

Two main issues affect the existing routing metrics for cognitive radio ad hoc networks: i) they are often based on heuristics, and thus they have not been proved to be optimal; ii) they do not account for the route diversity effects, and thus they are not able to measure the actual cost of a route. In this paper, an optimal routing metric for cognitive radio ad hoc networks, referred to as OPERA, is proposed. OPERA is designed to achieve two features: i) Optimality: OPERA is optimal when combined with both Dijkstra and Bellman-Ford based routing protocols; ii) Accuracy: OPERA exploits the route diversity provided by the intermediate nodes to measure the actual end-to-end delay, by taking explicitly into account the unique characteristics of cognitive radio networks. A closed-form expression of the proposed routing metric is analytically derived for both static and mobile networks, and its optimality is proved rigorously. Performance evaluation is conducted through simulations, and the results reveal the benefits of adopting the proposed routing metric for cognitive radio ad hoc networks.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 8 )