By Topic

Verification of a fast training algorithm for multi-channel sEMG classification systems to decode hand configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hanjin Lee ; Korea Inst. of Sci. & Technol. (KIST), Seoul, South Korea ; Keehoon Kim ; Myoung Soo Park ; Jong Hyeon Park
more authors

In this study, we evaluated a fast training algorithm to decode human hand configuration from sEMG signals on the forearms of five subjects. Eight skin surface electrodes were placed on the forearm of each subject to detect the sEMG signals corresponding to four different hand configurations and relax state. The preamplifier, which has 100 - 10000 times amplification gain and a 15 - 500 Hz bandpass filter, was designed to amplify the signals and eliminate noise. In order to enhance the performance of the classifier, feature extraction using class information was developed. The randomly assigned non-update learning method guarantees high speed classifier learning. The algorithm has been verified by experiments with five subjects.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012