By Topic

A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dey, S. ; Electromagn. Commun. Res. Lab., Pennsylvania State Univ., University Park, PA, USA ; Mittra, R.

A novel conformal finite-difference time-domain (CFDTD) technique for locally distorted contours that accurately model curved metallic objects is presented in this paper. This approach is easy to implement and is numerically stable. Several examples are presented to demonstrate that the new method yields results that are far more accurate than those generated by the conventional staircasing approach. Example geometries include cylindrical and spherical cavities, and a circular microstrip patch antenna. Accuracy of the scheme is demonstrated by comparing the results derived from analytical and Method of Moments (MoM) techniques

Published in:

Microwave and Guided Wave Letters, IEEE  (Volume:7 ,  Issue: 9 )