By Topic

High speed microrobot actuation in a microfluidic chip by levitated structure with riblet surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Masaya Hagiwara ; Dept. of Mech. Sci. & Eng., Nagoya Univ., Nagoya, Japan ; Tomohiro Kawahara ; Toru Iijima ; Yoko Yamanishi
more authors

This paper presents the high speed microrobot actuation driven by permanent magnets in a microfluidic chip. The riblet surface, which is regularly arrayed V groove reduces the fluid friction and enables stable actuation in high speed. The comprehensive analysis of fluid force, the optimum design and its fabrication were conducted and proved the friction reduction by riblet. The Ni and Si composite fabrication was employed to form the optimum riblet shape on the microrobot surface by wet and dry etching. The evaluation experiments show the microrobot can actuate up to 90 Hs, which is 10 times higher than the original microrobot. In addition, it can be applied to cell manipulation without harm since the microrobot is covered by Si, which is bio-compatible. One of the applications of developed microrobot was demonstrated by assembling cell aggregation in high speed.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012