By Topic

Performance of histogram descriptors for the classification of 3D laser range data in urban environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Behley, J. ; Dept. of Comput. Sci. III, Univ. of Bonn, Bonn, Germany ; Steinhage, V. ; Cremers, A.B.

The selection of suitable features and their parameters for the classification of three-dimensional laser range data is a crucial issue for high-quality results. In this paper we compare the performance of different histogram descriptors and their parameters on three urban datasets recorded with various sensors-sweeping SICK lasers, tilting SICK lasers and a Velodyne 3D laser range scanner. These descriptors are 1D, 2D, and 3D histograms capturing the distribution of normals or points around a query point. We also propose a novel histogram descriptor, which relies on the spectral values in different scales. We argue that choosing a larger support radius and a z-axis based global reference frame/axis can boost the performance of all kinds of investigated classification models significantly. The 3D histograms relying on the point distribution, normal orientations, or spectral values, turned out to be the best choice for the classification in urban environments.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012