By Topic

Dynamic region control for robot-assisted cell manipulation using optical tweezers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
X. Li ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 ; C. C. Cheah

Current manipulation techniques of optical tweezers treat the position of the laser beam as the control input and an open-loop kinematic controller is designed to move the laser source. In this paper, a closed-loop robotic control method for optical tweezers is formulated and solved. While robotic manipulation has been a key technology driver in factory automation, robotic manipulation of cells or nanoparticles is less well understood. The proposed formulation shall bridge the gap between traditional robot manipulation techniques and optical manipulation techniques of cells. A dynamic region controller is proposed for cell manipulation using optical tweezers. The desired objective can be specified as a dynamic region rather than a position or trajectory, and the desired region can thus be scaled up and down to allow flexibility in the task specifications. Experimental results are presented to illustrate the performance of the proposed controller.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012