By Topic

Controlling the planar motion of a heavy object by pushing with a humanoid robot using dual-arm force control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nozawa, S. ; Dept. of Mechano-Infomatics, Univ. of Tokyo, Bunkyo, Japan ; Kakiuchi, Y. ; Okada, K. ; Inaba, M.

Pushing heavy and large objects in a plane requires generating correct operational forces that compensate for unpredictable ground-object friction forces. This is a challenge because the reaction forces from the heavy object can easily cause a humanoid robot to slip at its feet or lose balance and fall down. Although previous research has addressed humanoid robot balancing problems to prevent falling down while pushing an object, there has been little discussion about the problem of avoiding slipping due to the reaction forces from the object. We extend a full-body balancing controller by simultaneously controlling the reaction forces of both hands using dual-arm force control. The main contribution of this paper is a method to calculate dual-arm reference forces considering the moments around the vertical axis of the humanoid robot and objects. This method involves estimating friction forces based on force measurements and controlling reaction forces to follow the reference forces. We show experimental results on the HRP-2 humanoid robot pushing a 90[kg] wheelchair.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012