Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the dynamic model and motion planning for a class of spherical rolling robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Svinin, M. ; Int. Res. & Educ. Center, Kyushu Univ., Fukuoka, Japan ; Morinaga, A. ; Yamamoto, M.

The paper deals with the dynamics and motion planning for a spherical rolling robot actuated by internal rotors that are placed on orthogonal axes. The driving principle for such a robot exploits non-holonomic constraints to propel the rolling carrier. The full mathematical model as well as its reduced version are derived, and the inverse dynamics is addressed. It is shown that if the rotors are mounted on three orthogonal axes, any feasible kinematic trajectory of the rolling robot is dynamically realizable. For the case of only two orthogonal axes of the actuation the condition of dynamic realizability of a feasible kinematic trajectory is established. The implication of this condition to motion planning in dynamic formulation is explored under a case study. It is shown there that in maneuvering the robot by tracing circles on the sphere surface the dynamically realizable trajectories are essentially different from those resulted from kinematic models.

Published in:

Robotics and Automation (ICRA), 2012 IEEE International Conference on

Date of Conference:

14-18 May 2012