By Topic

Collective buffering: Improving parallel I/O performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Nitzberg ; MRJ Technol. Solutions, NASA Ames Res. Center, Moffett Field, CA, USA ; V. Lo

“Parallel I/O” is the support of a single parallel application run on many nodes; application data is distributed among the nodes, and is read or written to a single logical file, itself spread across nodes and disks. Parallel I/O is a mapping problem from the data layout in node memory to the file layout on disks. Since the mapping can be quite complicated and involve significant data movement, optimizing the mapping is critical for performance. We discuss our general model of the problem, describe four Collective Buffering algorithms we designed, and report experiments testing their performance on an Intel Paragon and an IBM SP2 both housed at NASA Ames Research Center. Our experiments show improvements of up to two order of magnitude over standard techniques and the potential to deliver peak performance with minimal hardware support

Published in:

High Performance Distributed Computing, 1997. Proceedings. The Sixth IEEE International Symposium on

Date of Conference:

5-8 Aug 1997