By Topic

Frequency-Reuse Planning of the Down-Link of Distributed Antenna Systems with Maximum-Ratio-Combining (MRC) Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Distributed antenna systems (DAS) have been shown to considerably outperform conventional cellular systems in terms of capacity improvement and interference resilience. However, the influence of frequency reuse planning on the performance of DAS remains relatively unknown. To partially fill this gap, this paper presents a comparative analysis of the down-link of DAS versus conventional cellular systems using different values of frequency reuse factor. The analysis assumes Rayleigh fading channels and it also considers maximum-ratio-combining (MRC) receivers at the user terminals to exploit diversity both in the transmission and reception links. Numerical evaluation of the analytical expressions shows that, in general, for most of the cases DAS can achieve better performance figures than conventional cellular systems using considerably smaller values of frequency reuse factor. Conversely, DAS can significantly improve the throughput (2x-3x) and power consumption (6-10 dB) of conventional systems when using the same frequency reuse factor. An interesting result shows that in some particular cases DAS outperform conventional cellular systems no matter the frequency reuse factor used by the latter one, which indicates an effective capacity gain provided by the combined operation of DAS and MRC receivers.

Published in:

IEEE Latin America Transactions  (Volume:10 ,  Issue: 3 )