By Topic

Identification and Learning Control of Ocean Surface Ship Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shi-Lu Dai ; South China Univ. of Technol., Guangzhou, China ; Cong Wang ; Fei Luo

This paper presents the problems of accurate identification and learning control of ocean surface ship in uncertain dynamical environments. Thanks to the universal approximation capabilities, radial basis function neural networks (NNs) are employed to approximate the unknown ocean surface ship dynamics. A stable adaptive NN tracking controller is first designed using backstepping and Lyapunov synthesis. Partial persistent excitation (PE) condition of some internal signals in the closed-loop system is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition, the proposed adaptive NN controller is shown to be capable of accurate identification/learning of the uncertain ship dynamics in the stable control process. Subsequently, a novel NN learning control method which effectively utilizes the learned knowledge without re-adapting to the unknown ship dynamics is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed method.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:8 ,  Issue: 4 )