By Topic

Model Predictive Control of Nonlinear Systems With Unmodeled Dynamics Based on Feedforward and Recurrent Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng Yan ; Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Jun Wang

This paper presents new results on a neural network approach to nonlinear model predictive control. At first, a nonlinear system with unmodeled dynamics is decomposed by means of Jacobian linearization to an affine part and a higher-order unknown term. The unknown higher-order term resulted from the decomposition, together with the unmodeled dynamics of the original plant, are modeled by using a feedforward neural network via supervised learning. The optimization problem for nonlinear model predictive control is then formulated as a quadratic programming problem based on successive Jacobian linearization about varying operating points and iteratively solved by using a recurrent neural network called the simplified dual network. Simulation results are included to substantiate the effectiveness and illustrate the performance of the proposed approach.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:8 ,  Issue: 4 )