By Topic

Resilient data encoding for fault-prone signal transmission in parallelized signed-digit based arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Neuhauser, D. ; Inst. of Comput. Sci., Friedrich Schiller Univ., Jena, Germany ; Zehendner, E.

When arithmetic components are parallelized, fault-prone interconnections can tamper results significantly. Constantly progressing technology scaling leads to a steady increase of errors caused by faulty transmission. Resilient data encoding schemes can be used to offset these negative effects. Focusing on parallel signed-digit based arithmetic frequently used in highspeed systems, we propose suitable data encodings that reduce error rates by 25%. Data encoding should be driven by the occurrence probabilities of digits. We develop a methodology to obtain these probabilities, show an example fault-tolerant encoding, and discuss its impact on communicating parallel arithmetic circuits in an example error scenario.

Published in:

ARCS Workshops (ARCS), 2012

Date of Conference:

28-29 Feb. 2012