By Topic

Parallel coding for storage systems — An OpenMP and OpenCL capable framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Peter Sobe ; Faculty of Mathematics and Computer Engineering, Dresden University of Applied Sciences, Dresden, Germany

Parallel storage systems distribute data onto several devices. This allows high access bandwidth that is needed for parallel computing systems. It also improves the storage reliability, provided erasure-tolerant coding is applied and the coding is fast enough. In this paper we assume storage systems that apply data distribution and coding in a combined way. We describe, how coding can be done parallel on multicore and GPU systems in order to keep track with the high storage access bandwidth. A framework is introduced that calculates coding equations from parameters and translates them into OpenMP- and OpenCL-based coding modules. These modules do the encoding for data that is written to the storage system, and do the decoding in case of failures of storage devices. We report on the performance of the coding modules and identify factors that influence the coding performance.

Published in:

ARCS Workshops (ARCS), 2012

Date of Conference:

28-29 Feb. 2012