By Topic

Comprehensive Common Spatial Patterns With Temporal Structure Information of EEG Data: Minimizing Nontask Related EEG Component

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, H. ; Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China ; Dong Xu

In the context of electroencephalogram (EEG)-based brain-computer interfaces (BCI), common spatial patterns (CSP) is widely used for spatially filtering multichannel EEG signals. CSP is a supervised learning technique depending on only labeled trials. Its generalization performance deteriorates due to overfitting occurred when the number of training trials is small. On the other hand, a large number of unlabeled trials are relatively easy to obtain. In this paper, we contribute a comprehensive learning scheme of CSP (cCSP) that learns on both labeled and unlabeled trials. cCSP regularizes the objective function of CSP by preserving the temporal relationship among samples of unlabeled trials in terms of linear representation. The intrinsically temporal structure is characterized by an \ell _1 graph. As a result, the temporal correlation information of unlabeled trials is incorporated into CSP, yielding enhanced generalization capacity. Interestingly, the regularizer of cCSP can be interpreted as minimizing a nontask related EEG component, which helps cCSP alleviate nonstationarities. Experiment results of single-trial EEG classification on publicly available EEG datasets confirm the effectiveness of the proposed method.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 9 )