By Topic

A spatial diversity reception of binary signal transmission over Rayleigh fading channels with correlated impulse noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saaifan, K.A. ; Transm. Syst. Group (TrSyS), Jacobs Univ. Bremen, Bremen, Germany ; Henkel, W.

A Class-A density is well known to model interference, which is impulsive by nature. This model is expressed as a weighted infinite linear combination of Gaussian densities with different variances. The extension of this model for multiple receiving antennas is currently limited to two antennas. An algebraic extension leads to a multivariate Class-A density, which can be used for an arbitrary number of antennas. In this paper, we consider the design of optimum diversity combining for Rayleigh fading channels in the presence of Class-A interference. Since recent studies show a significant level of noise correlation in some wireless systems, we begin with a correlated multivariate Class-A model. Then, we show that the optimum combiner can be approximated by a maximum ratio combiner (MRC) preceded by noise decorrelators, which has a much lower complexity compared with the optimum one. When the interference is uncorrelated, we prove that the conventional MRC approximates the optimum combining.

Published in:

Telecommunications (ICT), 2012 19th International Conference on

Date of Conference:

23-25 April 2012