By Topic

Secure and Energy-Efficient Disjoint Multipath Routing for WSNs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Anfeng Liu ; Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China ; Zhongming Zheng ; Chao Zhang ; Zhigang Chen
more authors

Recent advances in microelectromechanical system (MEMS) technology have boosted the deployment of wireless sensor networks (WSNs). Limited by the energy storage capability of sensor nodes, it is crucial to jointly consider security and energy efficiency in data collection of WSNs. The disjoint multipath routing scheme with secret sharing is widely recognized as one of the effective routing strategies to ensure the safety of information. This kind of scheme transforms each packet into several shares to enhance the security of transmission. However, in many-to-one WSNs, shares have high probability to traverse through the same link and to be intercepted by adversaries. In this paper, we formulate the secret-sharing-based multipath routing problem as an optimization problem. Our objective aims at maximizing both network security and lifetime, subject to the energy constraints. To this end, a three-phase disjoint routing scheme called the Security and Energy-efficient Disjoint Route (SEDR) is proposed. Based on the secret-sharing algorithm, the SEDR scheme dispersively and randomly delivers shares all over the network in the first two phases and then transmits these shares to the sink node. Both theoretical and simulation results demonstrate that our proposed scheme has significant improvement in network security under both scenarios of single and multiple black holes without reducing the network lifetime.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:61 ,  Issue: 7 )