By Topic

Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michael Bosse ; Autonomous Systems Laboratory , ICT Centre, CSIRO, Brisbane, Australia ; Robert Zlot ; Paul Flick

Three-dimensional perception is a key technology for many robotics applications, including obstacle detection, mapping, and localization. There exist a number of sensors and techniques for acquiring 3-D data, many of which have particular utility for various robotic tasks. We introduce a new design for a 3-D sensor system, constructed from a 2-D range scanner coupled with a passive linkage mechanism, such as a spring. By mounting the other end of the passive linkage mechanism to a moving body, disturbances resulting from accelerations and vibrations of the body propel the 2-D scanner in an irregular fashion, thereby extending the device's field of view outside of its standard scanning plane. The proposed 3-D sensor system is advantageous due to its mechanical simplicity, mobility, low weight, and relatively low cost. We analyze a particular implementation of the proposed device, which we call Zebedee, consisting of a 2-D time-of-flight laser range scanner rigidly coupled to an inertial measurement unit and mounted on a spring. The unique configuration of the sensor system motivates unconventional and specialized algorithms to be developed for data processing. As an example application, we describe a novel 3-D simultaneous localization and mapping solution in which Zebedee is mounted on a moving platform. Using a motion capture system, we have verified the positional accuracy of the sensor trajectory. The results demonstrate that the six-degree-of-freedom trajectory of a passive spring-mounted range sensor can be accurately estimated from laser range data and industrial-grade inertial measurements in real time and that a quality 3-D point cloud map can be generated concurrently using the same data.

Published in:

IEEE Transactions on Robotics  (Volume:28 ,  Issue: 5 )