Cart (Loading....) | Create Account
Close category search window
 

Pt-CdTe Detectors Spectroscopic Performances and RBS and XRF Interface Composition Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

X- and Gamma-Ray spectroscopy measurements have been performed on differently prepared CdTe samples (as-grown or annealed, different surface treatments, etc.) with Pt electrodes deposited by electroless technique in order to extract the typical figures of merit of the material and the detectors. Moreover, Rutherford Backscattering Spectrometry (RBS) using 8 MeV $^{7}{hbox {Li}}^{+++}$ ions and X-Ray Fluorescence (XRF) using a Pd-anode X-Ray generator were performed to characterize the crystal surface as well as the semiconductor-electrode interface. The thickness, the stoichiometry and the concentration profiles of platinum, cadmium and tellurium present at the surface layers were determined. The distribution of Cd deficiency at the interface layers was profiled using simulations and showed complex profiles in the samples, that can greatly affect the electrical quality of the detectors. In addition, resistivity and mu-tau product mapping and electrical measurements have been performed for material characterization. The aim of this work is to understand and improve the structure of the material-electrode interface; in particular, to understand the effect of the annealing process on the fabrication of the contacts and, at the end, on the performances of the detectors. For this reason a large number of detectors have been produced applying various chemical surface treatments on as-grown and annealed material, in order to determine the best routine way to fabricate high-quality X- and Gamma-ray detectors to be used both as large size planar detectors and as elements of imaging systems in medical or industrial applications.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 4 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.