By Topic

Adaptive Data Embedding Framework for Multiclass Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tingting Mu ; Sch. of Comput. Inf. & Media, Univ. of Bradford, Bradford, UK ; Jianmin Jiang ; Yan Wang ; Goulermas, J.Y.

The objective of this paper is the design of an engine for the automatic generation of supervised manifold embedding models. It proposes a modular and adaptive data embedding framework for classification, referred to as DEFC, which realizes in different stages including initial data preprocessing, relation feature generation and embedding computation. For the computation of embeddings, the concepts of friend closeness and enemy dispersion are introduced, to better control at local level the relative positions of the intraclass and interclass data samples. These are shown to be general cases of the global information setup utilized in the Fisher criterion, and are employed for the construction of different optimization templates to drive the DEFC model generation. For model identification, we use a simple but effective bilevel evolutionary optimization, which searches for the optimal model and its best model parameters. The effectiveness of DEFC is demonstrated with experiments using noisy synthetic datasets possessing nonlinear distributions and real-world datasets from different application fields.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 8 )