Cart (Loading....) | Create Account
Close category search window
 

Opportunistic Decode-and-Forward Relaying With Beamforming in Two-Wave With Diffuse Power Fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yao Lu ; Beijing Univ. of Posts & Telecommun., Beijing, China ; Nan Yang ; Huaiyu Dai ; Xiaoxiang Wang

In this paper, we propose new opportunistic decode-and-forward (DF) relaying with beamforming for multirelay networks, where an Ns-antenna source communicates with an Nd-antenna destination with the aid of N parallel single-antenna relays. Among these relays, only one relay that correctly decodes the signal from the source and has the highest instantaneous signal-to-noise ratio (SNR) to the destination is selected for transmission. The source employs maximum ratio transmission (MRT) to transmit, whereas the destination performs maximum ratio combining (MRC) to the received signals. To examine the benefits of the proposed scheme, we first derive the exact outage probability for independently but non-identically distributed (i.n.i.d.) two-wave with diffuse power (TWDP) fading channels. We then derive an easy-to-compute expression for the exact outage probability to reduce computational cost. Our results encompass Rayleigh and Rician fading as special cases. We further derive a compact expression for the asymptotic outage probability, which characterizes two factors governing the network performance at high SNRs, i.e., the diversity order and the array gain. We demonstrate that our scheme preserves the maximum diversity order of N × min {Ns, Nd}. Additionally, we derive the optimal power allocation factor, which provides a practical design rule to optimally distribute the total transmission power between the source and the selected relay to minimize the outage probability.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:61 ,  Issue: 7 )

Date of Publication:

Sept. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.