By Topic

Biologically Inspired SNN for Robot Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nichols, E. ; Intell. Syst. Res. Centre, Univ. of Ulster, Derry, UK ; McDaid, L.J. ; Siddique, N.

This paper proposes a spiking-neural-network-based robot controller inspired by the control structures of biological systems. Information is routed through the network using facilitating dynamic synapses with short-term plasticity. Learning occurs through long-term synaptic plasticity which is implemented using the temporal difference learning rule to enable the robot to learn to associate the correct movement with the appropriate input conditions. The network self-organizes to provide memories of environments that the robot encounters. A Pioneer robot simulator with laser and sonar proximity sensors is used to verify the performance of the network with a wall-following task, and the results are presented.

Published in:

Cybernetics, IEEE Transactions on  (Volume:43 ,  Issue: 1 )