By Topic

Optimization-Based Voltage Support in Traction Networks Using Active Line-Side Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahrani, B. ; Ind. Electron. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Rufer, A.

Low system voltage in traction networks, mainly caused by active power absorption of locomotives, adversely affects the performance of the locomotives and also the power transmission capability of the catenary line. This paper introduces a voltage support scheme to compensate for the adverse effects of low system voltage. The proposed method is based on the injection of reactive power through the current-controlled line-side converter of locomotives. Comparing the catenary voltage with its reference value, the error is fed to a high-order controller. The controller generates the quadrature (q)-axis reference value of a current control strategy, which is responsible for the reactive power injection. To design the high-order controller, adopting the nonparametric models of the system at various locations, an optimization-based loop-shaping approach is used. The loop shaping guarantees the stability and the acceptable performance of the closed-loop system for various locomotive positions in the network. The performance of the proposed control strategy is evaluated based on simulation results in MATLAB/PLECS environment. Moreover, implementing a scaled-down laboratory setup, the performance of the proposed scheme is experimentally evaluated.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 2 )