By Topic

A motor imagery BCI experiment using wavelet analysis and spatial patterns feature extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Carrera-Leon, O. ; Electron. Depts., INAOE, Tonantzintla, Mexico ; Ramirez, J.M. ; Alarcon-Aquino, V. ; Baker, M.
more authors

A brain computer interface (BCI) is a system that aims to control devices by analyzing brain signals patterns. In this work, a convenient time-frequency representation (TFR) for visualizing ERD/ERS phenomenon (Event related synchronization and desynchronization) based on Hilbert transform and spatial patterns is addressed, and a wavelet based feature extraction method for motor imagery tasks is presented. The feature vectors are constructed with four statistical and energy parameters obtained from wavelet decomposition, based on the sub-band coding algorithm. Experimentation with three classification methods for comparison purposes was carried out using Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Support Vector Machine (SVM). In each case, ten-fold validation is used to obtain average misclassification rates.

Published in:

Engineering Applications (WEA), 2012 Workshop on

Date of Conference:

2-4 May 2012