Cart (Loading....) | Create Account
Close category search window
 

Adaptive Cut Generation Algorithm for Improved Linear Programming Decoding of Binary Linear Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaojie Zhang ; Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA ; Siegel, P.H.

Linear programming (LP) decoding approximates maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of box constraints together with a set of linear inequalities called “parity inequalities” that are derived from the constraints represented by the rows of a parity-check matrix of the code and can be added iteratively and adaptively. In this paper, we first derive a new necessary condition and a new sufficient condition for a violated parity inequality constraint, or “cut,” at a point in the unit hypercube. Then, we propose a new and effective algorithm to generate parity inequalities derived from certain additional redundant parity check (RPC) constraints that can eliminate pseudocodewords produced by the LP decoder, often significantly improving the decoder error-rate performance. The cut-generating algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. We also design two variations of the proposed decoder to make it more efficient when it is combined with the new cut-generating algorithm. Simulation results for several low-density parity-check (LDPC) codes demonstrate that the proposed decoding algorithms significantly narrow the performance gap between LP decoding and ML decoding.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.