By Topic

Toeplitz Approximation to Empirical Correlation Matrix of Asset Returns: A Signal Processing Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akansu, A.N. ; Electr. & Comput. Eng. Dept., New Jersey Inst. of Technol., Newark, NJ, USA ; Torun, M.U.

Empirical correlation matrix of asset returns has its intrinsic noise component. Eigen decomposition, also called Karhunen-Loeve Transform (KLT), is employed for noise filtering where an identified subset of eigenvalues replaced by zero. The filtered correlation matrix is utilized for calculation of portfolio risk and rebalancing. We introduce Toeplitz approximation to symmetric empirical correlation matrix by using auto-regressive order one, AR(1), signal model. It leads us to an analytical framework where the corresponding eigenvalues and eigenvectors are defined in closed forms. Moreover, we show that discrete cosine transform (DCT) with implementation advantages provides comparable performance as a good approximation to KLT for processing the empirical correlation matrix of a portfolio with highly correlated assets. The energy packing of both transforms degrade for lower values of correlation coefficient. The theoretical reasoning for such a performance is presented. It is concluded that the proposed framework has a potential use for quantitative finance applications.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 4 )