By Topic

Cavity Quantum Electrodynamics and Lasing Oscillation in Single Quantum Dot-Photonic Crystal Nanocavity Coupled Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Our recent advances in solid-state cavity quantum electrodynamics and lasing oscillation in single quantum dot (QD)photonic crystal (PhC) nanocavity coupled systems are discussed. These include the fabrication of high-quality 2-D PhC nanocavities (Q >; 50 000), which enabled the generation of spontaneous two-photon emission from a single QD, and the realization of lasing oscillation with single QD gain in the strong coupling regime. Moreover, we have fabricated high-quality 3-D PhC nanocavities (Q ~ 38 500), which have facilitated the realization of both lasing oscillation and the Purcell effect. Lasing oscillation in a 1-D PhC nanobeam cavity with gain produced by a few QDs has also been demonstrated.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:18 ,  Issue: 6 )